Ocean Forecast Modeling

- Ocean Forecast Australia Model (OFAM)
 - Grid is 1191x968x47
 - Global grid with E-W periodic boundaries
 - 1/10 degree horizontal resolution around Australia
 - coarser resolution outside of Australia region
 - 85 GB of main memory
 - 1 day of simulation for every 10 minutes of wallclock time on 21 processor NEC SX-6

OFAM Benchmark

- Ocean computations scaled nearly linearly
- Init-Restart time increases with number of processors
- I/O code involve all processors or single processor causing bottlenecks

OFAM Benchmarks

IBM Power 5 Benchmark	Inclusive elapse	OCEAN section	Startup- shutdown
	time	only	phase
64 cpu	1375 sec	1182 sec	193 sec
128 cpu	862	609	253 sec
256 cpu	697	356	341 sec
384 cpu	796	283	513 sec

OFAM2 Development

• OFAM 2

- Development of improved global grid for ocean forecasting
- Grid size is >4x larger than OFAM
- CPU time is >8x larger than OFAM
- Number of CPUs is ~10x more than OFAM to maintain elapse time (64 --> 640)
- Current MOM4/FMS I/O system is not optimal and does not scale.

MOM4-FMS issues

- MOM4 startup-shutdown issue
 - Decreasing read/write performance with increasing # cpus
 - Startup is reading restart file and initial conditions (FMS issue)
 - Shutdown writing restart files (FMS issue)
- FMS I/O architecture
 - Uses single cpu or all cpus for I/O tasks
 - I/O tasks are performed by computational processors
 - Global arrays held in master processor creating high memory requirements on computing architectures.

FMS I/O performance issues

- Issues with FMS I/O routines
 - FMS write/read modes are not adequate for OFAM2
 - FMS is used in MOM4, OASIS, and others
 - FMS is owned by NOAA GFDL with Balaji as project leader
- Investigation of FMS I/O changes to solve issues
 - Investigate I/O fabric architecture
 - Designate I/O processor per group of processors
 - Use I/O nodes and MPI to gather/scatter file data
 - I/O nodes can be allocated as needed
 - Implement I/O solution for FMS
 - Return code changes to GFDL
 - Implement in MOM4 and OASIS
 - Maintain backwards compatibility

MOM4/FMS Upgrade

- FMS I/O Rules to apply
 - No single processor holds global arrays
 - Don't use all processors in I/O to disk
 - Interconnects are faster than Storage I/O bandwidth
- FMS I/O Design Changes
 - Designate I/O processors/nodes
 - Assign groups of computational processors to I/O processors
 - Use parallel NetCDF among I/O processors
 - Designate MPI I/O communication groups

Storage I/O CPU Computations

Example architecture with specific service nodes

FMS Namelist Sample

old FMS namelist

```
&fms_io_nml
threading_read='multi'
threading_write='single'
fileset_write='single' /
```

new FMS namelist

```
&fms_io_nml
threading_read='fabric'
threading_write='fabric'
fileset_write='fabric'
io_threads = 3 /
```